

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	plone.app.event 1.1 documentation

plone.app.event - a calendar framework for Plone

Overview

plone.app.event is a new calendar framework for Plone.

Features:

	Dexterity behaviors and Archetypes type,

	Timezone support,

	Recurring Events,

	Whole day events,

	Open end events (End on the same day),

	Icalendar export,

	Icalendar import,

	Better calendar and events portlets,

	An event listing and event detail view.

It was developed with these goals in mind:

	Encapsulation and independence: All event related code should reside in a
single package. Relevant, re-usable functionality is split to seperate
packages. Plone’s dependencies on calendar related code should be
reduced to a minimum. plone.app.event should be able to be deinstalled
from Plone.

	Dexterity and Archetypes support: plone.app.event should provide
Dexterity behaviors, which can be used in Dexterity types and an ATEvent
content type (factored out from ATContentTypes). For a Dexterity event
type, use plone.app.contenttypes 1.1 or newer.

	Standards compliancy: We support the icalendar standard (RFC5545 [http://tools.ietf.org/html/rfc5545]) including recurrence.

	Recurring events based on the RFC5545 standard.

Documentation

	Installation
	Compatibility

	Removed 4.2 compatibility

	Buildout files

	Installation

	Configuration

	Architectural Overview
	Design goals

	Packages

	Other, external packages

	Developer documentation
	The IEvent interface

	Custom event content types

	Getting and setting properties

	Getting occurrences from IEventRecurrence implementing objects

	Reusing the @@event_summary view to list basic event information

	Running tests

	Development design choices

	Contributing
	Contributions

	Contributors

API documentation

	plone.app.event API
	plone.app.event.base

	plone.app.event.interfaces

	plone.app.event.recurrence

	plone.app.event.setuphandlers

	plone.app.event.vocabularies

	plone.app.event.at.content

	plone.app.event.at.interfaces

	plone.app.event.at.traverser

	plone.app.event.at.upgrades.event

	plone.app.event.browser.controlpanel

	plone.app.event.browser.event_listing

	plone.app.event.browser.event_view

	plone.app.event.browser.formatted_date

	plone.app.event.dx.behaviors

	plone.app.event.dx.interfaces

	plone.app.event.dx.traverser

	plone.app.event.ical.exporter

	plone.app.event.ical.importer

	plone.app.event.portlets.portlet_calendar

	plone.app.event.portlets.portlet_events

Legal

	Copyright notice

	GPL - Gnu General Public License

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

Installation

Compatibility

plone.app.event is tested with latest Plone 4.3 and the upcoming Plone 5.0.

Removed 4.2 compatibility

Since plone.app.event 1.1b1 we depend on changes from plone.app.contenttypes
1.1b1, which depends on plone.dexterity>=2.2.1 which itself (since 2.2) depends
on a AccessControl version not provided by the Plone 4.2 version fixes.

You can still experiment with Plone 4.2 compatibility if you need to, but
officially it’s support in plone.app.event is removed. There are a number of
other compatibility issues to be solved and the tests will fail anyways. If you
really need to, use this as a starting point:

plone.app.dexterity = 2.0.10
plone.dexterity = 2.1.3
plone.app.contenttypes = 1.1a1
z3c.form = 3.0.5
plone.app.z3cform = 0.7.5

Buildout files

	buildout.cfg: plone.app.event base installation.

	dev.cfg: plone.app.event development configuration, including tests.

	tests.cfg: plone.app.event tests only.

	sources.cfg: plone.app.event mr.developer source definitions.

	versions.cfg: plone.app.event version requirements.

Installation

Depend on one (or both) of these setuptools dependencies:

'plone.app.event [dexterity]'

or:

'plone.app.event [archetypes]'

The zcml dependency is be loaded automatically by z3c.autoinclude.

Then install plone.app.event via the controlpanel or by depending on the
following GenericSetup profile in metadata.xml:

plone.app.event:default

For Archetypes, use this one:

plone.app.event.at:default

Don’t use the plone.app.event.dx:default profile, which will be removed in
future versions of plone.app.event. Please create your own type based on
plone.app.event’s Dexterity behaviors (Through the web or via a GenericSetup
profile), or install plone.app.contenttypes for ready-to-use Dexterity types.

Plone 4.3 installation

plone.app.event depends on plone.app.portlets>=2.5a1. This version has the
calendar and event portlet removed, which are now in plone.app.event itself.
Also, it allows the calendar portlet to do AJAX calls without KSS via standard
jQuery. For Plone < 5.0 you have to fix the plone.app.portlets version in your
buildout like so:

[buildout]
versions = versions

[versions]
plone.app.portlets = 2.5a1

Upgrading from plone.app.event 1.0

The “ploneintegration” setuptools extra, subpackage and GenericSetup profile
have been gone. You just need to remove these dependencies from your setup and
use the “plone.app.event.at:default” profile instead, if you plan to use the
Archetypes based ATEvent type.

Use the provided upgrade steps to upgrade Dexterity behaviors: Attribute
storage (Migrate fields from annotation storage to attribute storage) and New
IRichText behavior (Enable the new IRichText instead of the IEventSummary
behavior).

Upgrading from Products.ATContentType to plone.app.event

Warning

Please backup before upgrading and check the upgraded contents for validity!

If you want to upgrade Products.ATContentTypes based ATEvents to
plone.app.event ones, there is an upgrade step for that: “Upgrades old AT
events to plone.app.events” (Metadata version 1 to 2). In order to use it, go
to Plone Control Center -> ZMI -> portal_setup -> Upgrades. Select
“plone.app.event.at:default” profile and click “Show old upgrades”. Select the
upgrade step and run it.

You might also need to “clear and rebuild” the catalog after upgrading. You can
do so at Plone Control Center -> ZMI -> portal_catalog -> Advanced (this
may take a while)

Upgrading to Dexterity

Upgrade steps to migrate Products.ATContentTypes based ATEvents,
plone.app.event based ATEvents or plone.app.event Dexterity example types
(plone.app.event.dx.event) to plone.app.contenttypes Dexterity Events can be
found within plone.app.contenttypes. This package utilizes plone.app.event’s
Dexterity behaviors for it’s Event type.

Configuration

Note

Don’t forget to set the portal timezone!

After installation, please set your timezone in the @@event-settings
controlpanel. Otherwise time calculations are based on UTC and likely wrong for
your timezone. Also set the first weekday setting for correct display of the
first weekday in calendar views.

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

Architectural Overview

Design goals

The development of plone.app.event was done with following design goals in
mind:

[a] Encapsulation and independence: All event related code should reside in a
seperate package (splitted into other packages, where appropriate). Plone
should be least dependend on plone.app.event. Best would be that one can
deinstall this feature completly.

[b] Dexterity and Archetypes support: plone.app.event should provide
Dexterity behaviors, which can be used in Dexterity types and an ATEvent
content type (factored out from ATContentTypes) as a replacement for the
Products.ATContentType ATEvent.

[c] Standards compliancy: the iCalendar / RFC5545 [http://tools.ietf.org/html/rfc5545] standard is wonderful flexible, so
plone.app.event should provide support for it by allowing ical exports. This
is also available for the current ATContentType based implementation, but
plone.app.event aims to improve it. A future goal is to support CalDAV also.

[d] Recurring events support based on the RFC5545 standard.

[e] A modern dateinput widget.

[f] Features like whole-day-events.

[g] Timezone support.

Encapsulation and independence: plone.app.event provides the Archetypes based
type and the Dexterity behaviors via two other subpackages in that package: at
and dx. Based on installed features (Products.ATContentTypes or
plone.dexterity, respectively), eather of those subpackages are included via
the zcml:condition statement. The calendar and event portlets were moved from
plone.app.portlets into plone.app.event, where they belong semantically - thus
improving encapsulation and independence and reducing interwoven dependencies.
The calendar portlet was completly refactored. The functionality of the
CalendarTool (portal_calendar) was reimplenented. Important settings from the
calendar-controlpanel are now available in the event configlet. Since the
calendar portlet was the only consumer of the CalendarTool, the CalendarTool,
the calendar controlpanel and the dependency to Products.CMFCalendar can be
dropped. The new plone.formwidget.datetime implements archetypes and z3cform
based widgets, so the old datetime widget can be dropped. Python-dateutil
provides recurrence calculations based on the RFC5545 standard -
plone.formwidget.recurrence provides a awidget for recurrence and
Products.DateRecurringIndex an appropriate index as a drop-in replacement for
Zope’s DateIndex. The iCalendar package was improved and is now used for
plone.app.event to provide icalendar serialization. The timezone support is
based on the pytz package. Plone now haves a portal timezone, User timezones
and every event can define another timezone, if wished. User timezones are
planned. Whole day events get their starttime set to
0:00 and endtime set to 23:59:59 - thats should be feasable in most cases

(excluding any scientific events...).

Packages

plone.app.event

Github: https://github.com/plone/plone.app.event

The “at” submodule provides the Archetypes based ATEvent content type as a
drop-in replacement of the ATContentType based ATEvent. Ical, recurrence and
generic event accessor adapters and some event subscribers related to the
ATEvent.

The “dx” submodule provides Dexterity behaviors (some granular ones). Like in
the “at” submodule, ical, recurrence and generic event accessor adapters as
well as some event subscribers are provided.

Both subpackages are only loaded, if the neccassary features are installed.

plone.app.event does not depend on CMFCalendar and the portal_calendar tool
any more. Plone core’s only consumer of this package was the calendar portlet
anyways, which was completly rewritten.

base.py provides some basic event related functionality. Many of them need a
context in order to get the correct timezone.

The “browser” submodule provides the new “event” controlpanel (the “calendar”
controlpanel can be dropped, since we do not need CMFCalendar any more). The
settings are stored in plone.registry.
The event view is generic to ATEvent and DX based event types.

The ical submodule provides adapters and views for export and import to and
from icalendar resources.

The locales directory which holds locale files.

In the portlets subpackage there are portlet_calendar (a complete rewrite) and
portlet_events, both from plone.app.portlets, where only BBB imports exist, so
that existing installations do not break.

The tests are all ported to plone.app.testing.

plone.event

Github: https://github.com/plone/plone.event

Date/time related utilities, recurrence calculations based on python-dateutil.

plone.formwidget.datetime

Github: https://github.com/plone/plone.formwidget.datetime

Derived from collective.z3cform.datetimewidget and archetypes.datetimewidget
(which itself was derived from the former). It is splitted into “at” and
“z3cform” subpackages, like plone.app.event.

plone.formwidget.recurrence

Github: https://github.com/plone/plone.formwidget.recurrence

Recurrence widget based on jquery.recurrenceinput.js. Supports complex
recurrence rules with exclusion and inclusion dates, automatically updated
occurrences display within the widget and a nicely formatted string which
explains the recurrence rule.
The recurrence rule is stored as a RFC5545/icalendar compatible recurrence
string.

Products.DateRecurringIndex

Github: https://github.com/collective/Products.DateRecurringIndex

A drop-in replacement for Zope’s DateIndex with support for recurring events.
Each recurrence get’s an index entry.

icalendar

Github: https://github.com/collective/icalendar

icalendar parser/generator framework.

Other, external packages

plone.app.eventindex

Github: https://github.com/regebro/plone.app.eventindex

A possible alternative to Products.DateRecurringindex, which supports late
indexing and which does not have problems with unlimited occurrences. This
eventindex is currently not used by plone.app.event.

Python-dateutil

Documentation: http://labix.org/python-dateutil
Repository: https://launchpad.net/dateutil

Useful extensions to the standard Python datetime features. plone.app.event
uses it mainly for recurrence calculations.

Pytz

Documentation: http://pytz.sourceforge.net/
Pypi page: https://pypi.python.org/pypi/pytz/

World timezone definitions, modern and historical. Based on the Olson database.

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

Developer documentation

The IEvent interface

All event types should implement the IEvent interface from
plone.event.interfaces, in order that some functionality of
plone.app.event can be used. For example, catalog searches for event objects
ask for the IEvent interface in the object_provides index:

from plone.event.interfaces import IEvent
assert(IEvent.providedBy(obj)==True)

Custom event content types

Using Dexterity behaviors to build new content types with IEvent support

For Dexterity use the plone.app.event.dx.behaviors.IEventBasic and
optionally any other event related behavior from there.

You can just enable the behaviors you want to use for your custom content type
in the FTI via GenericSetup or through the web. This types/Event.xml
GenericSetup FTI configuration snippet from plone.app.contenttypes [https://github.com/plone/plone.app.contenttypes/blob/paevent/plone/app/contenttypes/profiles/default/types/Event.xml]
shows an example. The only behavior, which is definitely needed is the
IEventBasic behavior. All other are optional:

<property name="behaviors">
 <element value="plone.app.event.dx.behaviors.IEventBasic"/>
 <element value="plone.app.event.dx.behaviors.IEventRecurrence"/>
 <element value="plone.app.event.dx.behaviors.IEventLocation"/>
 <element value="plone.app.event.dx.behaviors.IEventAttendees"/>
 <element value="plone.app.event.dx.behaviors.IEventContact"/>
 <element value="plone.app.contenttypes.behaviors.richtext.IRichText"/>
 <element value="plone.app.dexterity.behaviors.metadata.IDublinCore"/>
 <element value="plone.app.content.interfaces.INameFromTitle"/>
 <element value="plone.app.dexterity.behaviors.discussion.IAllowDiscussion"/>
 <element value="plone.app.dexterity.behaviors.exclfromnav.IExcludeFromNavigation"/>
 <element value="plone.app.relationfield.behavior.IRelatedItems"/>
 <element value="plone.app.versioningbehavior.behaviors.IVersionable" />
</property>

Of course, it’s also possible to create a new behavior which derives from
plone.app.event’s one, like so:

from plone.app.event.dx.behaviors import IEventBasic
from plone.app.event.dx.behaviors import IEventLocation
from plone.app.event.dx.behaviors import IEventRecurrence
from plone.app.event.dx.behaviors import first_weekday_sun0
from plone.app.event.dx.interfaces import IDXEvent
from plone.app.event.dx.interfaces import IDXEventLocation
from plone.app.event.dx.interfaces import IDXEventRecurrence
from plone.autoform import directives as form
from plone.autoform.interfaces import IFormFieldProvider
from zope.interface import alsoProvides

class IEvent(IEventBasic, IEventRecurrence, IEventLocation,
 IDXEvent, IDXEventLocation, IDXEventRecurrence):
 """Custom Event behavior."""
 form.widget('start', first_day=first_weekday_sun0)
 form.widget('end', first_day=first_weekday_sun0)
 form.widget('recurrence',
 start_field='IEvent.start',
 first_day=first_weekday_sun0)
alsoProvides(IEvent, IFormFieldProvider)

Note

If you don’t register the behavior with a factory and a marker interface like
it’s done in plone.app.event, the behavior is the marker interface itself
(see plone.app.dexterity’s documentation on behavior marker interfaces [https://developer.plone.org/reference_manuals/external/plone.app.dexterity/behaviors/providing-marker-interfaces.html]).
In this case, the behavior should also derive from the marker interfaces
defined in plone.app.event.dx.interfaces in order to let it use all of
plone.app.event’s functionality (indexers, adapters and the like).

Note

You have to reconfigure the start, end and recurrence fields’ widgets again.
The widgets for the start and end fields have to be configured with
the first_day parameter while the recurrence field widget has to be
configured with the first_day and start_field parameters. Even if the
start field is derived from another behavior, in this case the
dotted-path includes the new behavior: IEvent.start.

Then register the behavior in ZCML:

<plone:behavior
 title="Event"
 description="A Event"
 provides=".behaviors.IEvent"
 for="plone.dexterity.interfaces.IDexterityContent"
 />

And register it in your FTI via GenericSetup as usual.

Extending the Archetypes based plone.app.event.at.content.ATEvent class

For Archetypes, derive from plone.app.event.at.content.ATEvent.

Here is an example from collective.folderishtypes [https://github.com/collective/collective.folderishtypes/blob/master/collective/folderishtypes/content/folderish_event.py]:

from Products.Archetypes import atapi
from plone.app.event.at import content as event

type_schema = event.ATEventSchema.copy() # Add your custom fields here
Move location back to main schemata
type_schema.changeSchemataForField('location', 'default')
type_schema.moveField('location', before='attendees')

class CustomEvent(event.ATEvent):
 portal_type = 'Custom Event'
 _at_rename_after_creation = True
 schema = type_schema
atapi.registerType(CustomEvent, PROJECTNAME)

Register this type in the FTI via Generic Setup as usual.

None of the above

If you cannot use the above two methods, you can still implement the
plone.event.interfaces.IEvent interface.

In any case you might need to provide an IEventAccessor adapter. For more
information, see below.

Getting and setting properties

For Dexterity based types: Accessing properties behavior interface adaption

To use the functionality provided by the behaviors, get the behavior adapter
first. For example, for setting or getting attributes of an event object, do:

from plone.app.event.dx.behaviors import IEventBasic
event = IEventBasic(obj)
event.start = datetime(2011,11,11,11,00)
event.end = datetime(2011,11,11,12,00)
event.timezone = 'CET'

import transaction
transaction.commit()

Alternatively, use the more convenient IEventAccessor pattern described below.

Accessing event objects via an unified accessor object

To make it easier to support Archetypes and Dexterity based objects, an
adapter for content objects is provided, which allows unified interaction with
event objects.

The interface definition can be found in plone.event.interfaces.IEventAccessor.
Default accessors:

	For IEvent (plone.event.interfaces.IEvent) implementing objects:
plone.event.adapters.EventAccessor.

	For IATEvent (plone.app.event.at.interfaces.IATEvent):
plone.app.event.at.content.EventAccessor.

	For IDXEvent (plone.app.event.dx.interfaces.IDXEvent):
plone.app.event.dx.behaviors.EventAccessor.

	For IOccurrence (plone.event.interfaces.IOccurrence):
plone.app.event.recurrence.EventAccessor.

Event objects implement the IEvent interface from
plone.event.interfaces.

The objects can be accessed like so:

from plone.event.interfaces import IEventAccessor
acc = IEventAccessor(obj)
assert(isinstance(acc.start, datetime)==True)
assert(isinstance(acc.timezone, string)==True)
assert(isinstance(acc.recurrence, string)==True)

Set properties of the object via the accessor. Don’t forget to throw
ObjectModifiedEvent after setting properties to call an event subscriber which
does some timezone related post calculations:

from zope.event import notify
from zope.lifecycleevent import ObjectModifiedEvent
tz = pytz.timezone('Europe/Vienna')
acc.start = datetime(2012, 12, 12, 10, 10, tzinfo=tz)
acc.timezone = 'Europe/London'
notify(ObjectModifiedEvent(obj))

You can also use the accessor edit method, which also throws the
ObjectModifiedEvent event for you:

acc.edit(end=datetime(2012, 12, 12, 20, 0, tzinfo=tz))

For creating events, you can use the accessor’s create method, which again
returns an accessor. E.g. if you want to create the Dexterity based event
type:

from plone.app.event.dx.behaviors import EventAccessor
acc = EventAccessor.create(
 container=app.plone,
 content_id=u'new_event'
 title=u'New Event'
 start=datetime(2013, 7, 1, 10, 0, tzinfo=tz),
 end=datetime(2013, 7, 1, 12, 0, tzinfo=tz),
 timezone='Europe/Vienna'
)
acc.location = u"Graz, Austria"

Access the content object from an accessor like so:

obj = acc.context
from plone.event.interfaces import IEvent
assert(not IEvent.providedBy(acc))
assert(IEvent.providedBy(obj))

Getting occurrences from IEventRecurrence implementing objects

Events with recurrence support should implement the IEventRecurrence
(plone.event.interfaces.IEventRecurrence) interface.

An IRecurrenceSupport implementing adapter allows the calculation of all
occurrences:

from plone.event.interfaces import IRecurrenceSupport
rec_support = IRecurrenceSupport(obj)

All occurrences of the object
rec_support.occurrences()

All occurrences within a time range
start = datetime(2012,1,1)
end = datetime(2012,1,3)
rec_support.occurrences(range_start=start, range_end=end)

If you want to get all occurrences from any event within a timeframe, use the
get_events function like so:

from plone.app.event.base import get_events, localized_now
occ = get_events(context, start=localized_now(), ret_mode=2, expand=True)

Reusing the @@event_summary view to list basic event information

The @@event_summary listing lists basic event information including microdata
on the right hand side of the default event view. You can reuse this listing in
custom views by calling the event_summary view on an IEvent providing context
in page templates like so:

<tal:eventsummary replace="structure context/@@event_summary"/>

or in Python code like so:

context.restrictedTraverse('@@event_ticket_summary')()

There are cases where you might exclude some of this information. You can do
that by overriding the excludes list of the view. Possible values are:

title
subjects
date
occurrences
location
contact
event_url
ical

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

Running tests

After running buildout with the dev.cfg or tests.cfg config files, you can run
all tests (including robot tests with --all switch) like so:

./bin/test -s plone.app.event --all

The -t switch allows you to run a specific test file or method. The
–list-tests lists all available tests.

To run the robot tests do:

./bin/test --all -s plone.app.event -t robot

For development, it might be more convenient to start a test server and run
robot tests individually, like so:

./bin/robot-server plone.app.event.testing.PAEventDX_ROBOT_TESTING
./bin/robot plone/app/event/tests/robot/test_event_roundtrip.robot

In the robot test you can place the debug statement to access a robot shell
to try things out.

For more information on this topic visit:
http://developer.plone.org/reference_manuals/external/plone.app.robotframework/happy.html

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

Development design choices

	Timezone support. Every event has a timezone.

	Usage of pytz. The timezone library used it pytz. Other timezone identifiers
than defined in pytz (Olson database) are not supported.

	Dropped support for ambiguous timezones. Three letter timezones like CET,
MET, PST, etc. are not supported.

	Start/end datetime inputs are treated as localized values. If a timezone on
an event is changed afterwards, the datetime values are not converted to the
target timezone.

	Whole day events last from 0:00 until 23:59:59 on the same day.

	Open end events end on the same day at 23:59:59.

	For recurring events, we do not support unlimited occurrences. The number of
possible recurrences of an event is limited to 1000 occurrences. This way,
indexing and other operations doesn’t take too long. The maximum number of
occurrences is set via the MAXCOUNT constant in
plone.event.recurrence.

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

Contributing

Contributions

Please report any bugs, issues or feature requests here:
https://github.com/plone/plone.app.event/issues.

And better yet, help out with documentation and pull-requests!

Note

To accept your pull requests, we need you need to have Plone contributors
agreement signed and sent-in. For more information, see:
` Contributor’s Agreement for Plone Explained <http://plone.org/foundation/contributors-agreement/contributors-agreement-explained>`_.

Contributors

Contributors, please add you name here! By doing this, you also state, that you
have signed the Contributor’s Agreement for Plone Explained [http://plone.org/foundation/contributors-agreement/contributors-agreement-explained].
Download it from plone.org [http://plone.org/foundation/contributors-agreement/agreement.pdf/view].
Thanks!

	Johannes Raggam, thet (Main author and PLIP implementation)

	Andreas Jung, zopyx

	David Glick, davisagli

	Érico Andrei, ericof

	Franklin Kingma, kingel

	Gauthier Bastien, gbastien

	Georg Bernhard, gogo

	Giacomo Spettoli, giacomos

	Guido Stevens, gyst

	JeanMichel FRANCOIS, toutpt

	Jens Klein, jensens

	Lennart Regebro, regebro

	Nathan Van Gheem, vangheem

	Philip Bauer, pbauer

	Robert Niederreiter, rnixx

	Rok Garbas, garbas

	Róman Joost, romanofski

	Sean Upton, seanupton

	Simone Orsi, simahawk

	Thomas Desvenain, tdesvenain

	Timo Stollenwerk, timo

	Tom Gross, tomgross

	Vincent Fretin, vincentfretin

	Vitaliy Podoba, piv, vipod

	Wolfgang Thomas, pysailor

Find out who contributed:

$ git shortlog -s -e

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

plone.app.event API

	plone.app.event.base

	plone.app.event.interfaces

	plone.app.event.recurrence

	plone.app.event.setuphandlers

	plone.app.event.vocabularies

	plone.app.event.at.content

	plone.app.event.at.interfaces

	plone.app.event.at.traverser

	plone.app.event.at.upgrades.event

	plone.app.event.browser.controlpanel

	plone.app.event.browser.event_listing

	plone.app.event.browser.event_view

	plone.app.event.browser.formatted_date

	plone.app.event.dx.behaviors

	plone.app.event.dx.interfaces

	plone.app.event.dx.traverser

	plone.app.event.ical.exporter

	plone.app.event.ical.importer

	plone.app.event.portlets.portlet_calendar

	plone.app.event.portlets.portlet_events

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.base

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.interfaces

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.recurrence

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.setuphandlers

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.vocabularies

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.at.content

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.at.interfaces

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.at.traverser

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.at.upgrades.event

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.browser.controlpanel

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.browser.event_listing

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.browser.event_view

	
plone.app.event.browser.event_view.get_location(accessor)[source]

	Return the location.
This method can be overwritten by external packages, for example to provide
a reference to a Location object as done by collective.venue.

	Parameters:	accessor (IEvent, IOccurrence or IEventAccessor) – Event, Occurrence or IEventAccessor object.

	Returns:	A location string. Possibly a HTML structure to link to another
object, representing the location.

	Return type:	string

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.browser.formatted_date

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.dx.behaviors

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.dx.interfaces

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.dx.traverser

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.ical.exporter

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.ical.importer

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.portlets.portlet_calendar

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

 	plone.app.event API

plone.app.event.portlets.portlet_events

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	plone.app.event 1.1 documentation

Copyright notice

plone.app.event is copyright Plone Foundation

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston,
MA 02111-1307 USA.

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	plone.app.event 1.1 documentation

GPL - Gnu General Public License

	GNU GENERAL PUBLIC LICENSE

	Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your

freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software–to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid

anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and

(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain

that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software

patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and

modification follow.

GNU GENERAL PUBLIC LICENSE

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

	This License applies to any program or other work which contains

a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The “Program”, below,
refers to any such program or work, and a “work based on the Program”
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

	You may copy and distribute verbatim copies of the Program’s

source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

	You may modify your copy or copies of the Program or any portion

of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

	You may copy and distribute the Program (or a work based on it,

under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

	You may not copy, modify, sublicense, or distribute the Program

except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

	You are not required to accept this License, since you have not

signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

	Each time you redistribute the Program (or any work based on the

Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

	If, as a consequence of a court judgment or allegation of patent

infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

	If the distribution and/or use of the Program is restricted in

certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

	The Free Software Foundation may publish revised and/or new versions

of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

	If you wish to incorporate parts of the Program into other free

programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

	BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY

FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

	IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest

possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest

to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c’ for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w’ and `show c’; they could even be
mouse-clicks or menu items–whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	plone.app.event 1.1 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 plone	

 	
 	
 plone.app.event.browser.event_view	

 	
 	
 plone.app.event.dx.interfaces	

 	
 	
 plone.app.event.interfaces	

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 modules |

 	plone.app.event 1.1 documentation

Index

 G
 | P

G

 	

 	get_location() (in module plone.app.event.browser.event_view)

P

 	

 	plone.app.event.browser.event_view (module)

 	plone.app.event.dx.interfaces (module)

 	

 	plone.app.event.interfaces (module)

 Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

 _static/minus.png

_static/comment-bright.png

_static/comment-close.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		plone.app.event 1.1 documentation »

 All modules for which code is available

		plone.app.event.browser.event_view

 © Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

_modules/plone/app/event/browser/event_view.html

 Navigation

 		
 index

 		
 modules |

 		plone.app.event 1.1 documentation »

 		Module code »

 Source code for plone.app.event.browser.event_view

from Products.Five.browser import BrowserView
from plone.event.interfaces import IEventAccessor
from plone.event.interfaces import IOccurrence

[docs]def get_location(accessor):
 """Return the location.
 This method can be overwritten by external packages, for example to provide
 a reference to a Location object as done by collective.venue.

 :param accessor: Event, Occurrence or IEventAccessor object.
 :type accessor: IEvent, IOccurrence or IEventAccessor

 :returns: A location string. Possibly a HTML structure to link to another
 object, representing the location.
 :rtype: string
 """
 if not IEventAccessor.providedBy(accessor):
 accessor = IEventAccessor(accessor)
 return accessor.location

class EventView(BrowserView):

 def __init__(self, context, request):
 self.context = context
 self.request = request
 self.data = IEventAccessor(context)

 def __call__(self):
 if IOccurrence.providedBy(self.context):
 # The transient Occurrence objects cannot be edited. disable the
 # edit border for them.
 self.request.set('disable_border', True)
 return self.index() # render me.

 © Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

archive/_archive-TODO-ploneconf2010-openspace.html

 Navigation

 		
 index

 		
 modules |

 		plone.app.event 1.1 documentation »

NOTES from ploneconf2010 open space

focus on finishing

		widget (datepicker & recurrencewidget)

		calendar & events portlets

		export ical (maybe also vcal. thet is suggesting to drop support for vcal since it’s an really old standard)

		whole day events

		more daterecurringindex tests

		migration work can be done after plip

more

		rss support

		
		calendar views

		monthly view, weekly view, daily view

		hcal microformat

		IDEA:

		when deleting an occurence of an recurring event from calendar view,
deleting should be faked by adding an exclusion date
google calendar does that thing

timezone issues

		don’t use timezone information at all?

		NO. better not.

		save and display dates in users local timezone

		timezone from request, set by user’s browser

		confusing usecase:

		german guy editing events in bristol.
adapting timezone when editing and displaying

google calendar: asks if event should be displayed in users local timezone
or timezone of event location
when using timezones, tz information must be updated regulary and often
(several times in the year). admins won’t be very happy beeing in such a
situation.

discussion

		
		archetype datetime

		see c.z3cform.datetimewidget

		
		archetype recurrence event widget

		see z3cform recurrence event widget

		subclassing ATEvent possible? yes, should be.

hcal microformat
ical/vcal, drop vcal?

 © Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

archive/_archive-TODO.html

 Navigation

 		
 index

 		
 modules |

 		plone.app.event 1.1 documentation »

PLEASE NOTE

This file is for reference and will be removed when all relevant issues are
handled by the github issue tracker. Here are still some TODO’s which should be
checked again.

legend

OK ... that item is done
IP ... that item is in progress
ISSUED ... moved to github tracker

TODO

OK - plone.app.collection: integrate, add relative time delta

		ISSUED - generalize IRecurrence adapter. move out o’ contenttypes and use generic

		event accessor to access event’s attributes.

		ISSUED - use generic event accessor also for ical serialization. no need for

		content-type specific adapters then.

ISSUED - plone.app.event.at in seperate egg...

ISSUED - GMT offsets have to be supported ... maybe a converter btw olson and GMT . look
into pytz for a converter

ISSUED - timezone getting/in which timezone is an event displayed. –/ document!
generic event aceesor : also for json...

whole day handler : good self speaking test cases,

timezone of the request???
ISSUED - different timezone conversion strategies.... > display always in portal timezone, display in user timezone..., ...
ISSUED - prefix with _...

BUG

OK - recurring events: when searching for events within a timeframe, the
IRecurrence.occurrences method possibly returned a list where starts and ends
are of different lenght, leading into an error. now, the end dates of the
occurrences list are calculated from the start date + a duration.

OK+Test: calendarportlet: unicodedecodeerror with umlauts in title, desc or location.

portlet_calendar

		next/previous: overlay displays raw-overlay string

ISSUED - remove kss dependency, use jquery-only

PLONECONF TALk

ISSUED - fix icalendar timezone export

OK - plone.formwidget.datetime
OK - fix for AT and DX

OK polish dx type
OK integrate recurrence widget
OK defaults for recurrencewidget.
OK ical export

OK fix vincentfretin’s start/end js (unify datetime templates for that?)

ISSUED - create uninstall profiles
OK - create pre-plone43 profiles (uninstalls default plone stuff)

thet

ISSUED thet - fix whole_day event export.... end-date is set startdate+1. in some cases end-date is two days after
start-date. this has something to do with utc conversion...
or set end-date to same date as start date, which is semantically more correct?

ISSUED FIRST: fix timezone support in icalendar export. then this issue is also gone.

		thet - atevent: after changes to default_start and default_end, start+end is now 1,

		resp. 2 hours in future. check why

thet - add portlet_calendar and portlet_events on startpage (this one with unpublished and published events).

thet - show unpublished events as such in portlet_events and portlet_calendar

ical

ISSUED - ical export, dx types: UID not present in events

		ISSUED - Use VTIMEZONE compoenent and TZID properties in ical exports for every

		date/datetime

ISSUED - Proper ATTENDEES support for icalendar export

OK - fix tests

datetime widget

WONTFIX - 1) - unify plone.formwidget.datetime templates

OK - 2) - fix vincent’s dt-javascript’s, which are failing now

		eventually merge supton’s uu.smartdate with plone.formwidget.datetime
http://bazaar.launchpad.net/~upiq-dev/upiq/uu.smartdate/changes

		DX: when calculating default_end time at 23:xx, its 0:xx. the hour component
isn’t displayed in the datetime widget.

		move parts/omelette/Products/CMFPlone/skins/plone_form_scripts/validate_start_end_date.vpy
to plone.formwidget.dateinput or plone.app.event.

OK - years_range - calendar starting year, calendar future years options in datetimewidget.

ISSUED - option: use textinput style with fallback to selectors if no js is avail.

ISSUED - integrate timepicker (adapted from mozi)

recurring widget

		remove the leading zero 2nd method.

index

		integrate lennart’s plone.app.eventindex

OK (artsprint) - benchmarks for both indices

		usage of IIBTree - see discussion on plone-dev

test if IIBTrees or set are faster
>>> ts = time.time(); b=difference(IISet(a), IISet(b)); time.time() - ts
0.014604091644287109
>>> ts = time.time(); b=set(a) - set(b); time.time() - ts

		do we need to add the indices to ATContentTypes.criteria.__init__ indices
Constants?

types

ISSUED - uninstall profiles

		“no end date” boolean option

dexterity behaviors / types

		OK - editing DX types with event behavior fails, since a tznaive DT is compared

		to timzone aware DT. see inline TODO statements.

		
		in metadata catalog, timezone’d times should reside, not un-timezone’d (see

		atevent)

		
		z3cform: for time 0:00, the hour is not displayed. when displaying, 12:00

		AM is shown.

timezone support

		eventually provide configlet to configure TZ per user
user should be able to select his timezone in user properties

		allow no TZ setting on content context at all - this solves “world plone
day” problem (event in different timezones, whole day in every timezone)

		GenericSetup import profile for setting the default timezone on install time
(and upgrade time as well).

		if no timezone is selected: same as mail settings: note in nonfig area - at least
display in edit form to link in control panel.

FIXES:

		on fresh install, when creating an event - no timezones are configured and
cannot be selected - but are mandatory. at least a default timezone has to
be selected in the event-settings configlet. that should be set at install
time.

documentation

		plip documentation

		document daterecurringindex benchmark results

		document TZ behavior with examples

		document api to get lsit of event

		sphinx API autodoc?

		document removal of ICalendarSupport (interface for ical export ability) in
plone.app.event.interfaces. MAYBE provide that interface in ATContentTypes
for backwards compatibility

general

		ISSUED - Factor out generic methods without plone.app.* or Zope2 dependencies and move

		them to plone.event.

OK - Solgema * recurrence widget dateinput is behind overlay

		integrate a localized, nice formated duration function

		Rethink the catalog metadata entries. ADD whole_day (Solegma asked for it).

		Generic icalendar types interfaces for event, journal, todo in plone.event

		Check ordering of schema fields.

OK - Refactor tests.

		the content types depend on event handlers.
notify(ObjectModifiedEvent(event)) has always to be called manually if object
isn’t modified by a form. is that failure proof?

		eventually remove recurrence functionality for plip submission?

		improve jenkins integration

CMFPlone

		remove portal_skins/plone_content/event_view.pt

		remove portal/icon_export_vcal.png

		remove label_add_to_vcal

CMFCalendar deprecation

		deprecate/remove portal_calendar from Products.CMFPlone

		migration steps

		Remove calendar configlet from plone.app.controlpanel

		provide an utility for portal-message/warning viewlet info, so that warnings
can be injected and that warning-checker code must not be in the
controlpanel-overview template anymore.

		permissions of cmfcalendar in plone.app.event, if possible - or drop em.
martin says in his book, that cmfcalendar permissions are an historical
accident. upgrade step probably needed.

migration steps

		if default timezone is not set, migration cannot run

		migration from old ATEvent (catalog update)

		Check if any upgrade steps are neccassary for changed permission names (see
config.py)

future

		provide caldav support, using webdav. make Zope2.webdav obsolete and use
z3c.dav or wsgidav or whatever.

		Integrate RSVP - Resource reSerVation Protocol (IP, RFC 2205)

DONE

OK plone.forminput.recurrence * create z3cform based recurrence widget for use with dx types

OK * register sample DX event with event_view

OK * unify AT and DX event browser view

		OK * use p.a.event.base.get_portal_events all over, where needed (e.g. event

		portlet)

		OK * make ical adapters for dx based types

		OK . remove adapters for IATFolder, etc. since IFolder does the same.
NO . can you use IFolder also for IDexterityContainer objects?

OK - DX events: calendar portlet breaks

OK - thet * support allday events in icalendar: export date-only, enddate+1day

OK - Cleanup plone.event for unused methods

OK - Cleanup plone.event for critical dependencies.

		OK - thet - ditch Products.CMFCalendar, if possible.

		in branch - merge-CMFCalendar

cmfcalendar seems to be only used by calendarportlet.
$ grept cmfalendar parts/omelette/*

		OK - thet - calendarportlet: refactoring for removed portal_calendar dependency and

		
		new plone.app.event.base based approach.

		NO - calendar portlet using jquery tools calendar?
- template change, so that a viewlet can also use calendar via

metal:macros.

OK - thet - merge calendar and plone.app.event portlet.
OK - reimplement important functionality from calendar configlet

-> upgrade step

		NO - eventually ditch start_date and end_date, replacing them with more RFC5545

		names dtstart, dtend...
!!! probably NOT. that might cause trouble.
!!! on the other hand... it’s not used anyways and the api changed from pre
plone.app.event ATEvent implementation anyways...
$ grept start_date parts/omelette/*

		OK - thet (regebro) * finish icalendar 3.0 branch, where __str__ isn’t used

		
		to_ical method into event content type. method may use more generic one.

OK - thet (regebro) * rrule freq must be present. make/update validator with that.

OK - thet * make generic ical adapter.

OK - regebro - bring forward plone.formwidget.recurrence and jquery.recurrence

		OK * portlets renamed, fix it in old instances: event -> portlet_event, calendar ->

		
portlet_calendar (calendar is a python module.)

not needed, since legacy calendar and event modules left in
plone.app.portlets.

		OK * plone.app.event.browser.event_view.pt -> eventually make view more generic

		and usable for dx also... by replacing widget-calls

OK - garbas/thet - use icalendar instead of plone.rfc5545 / plone.event

		OK - thet - Refactor plone.app.event for usage of an subpackage “at” (later

		also “dx”) where all ATCT (later also dexterity) related stuff resides.
when dexterity becomes one day the default content type framework, we won’t
depend on AT anymore...

		OK - thet - archetypes.datetimewidget, collective.z3cform.datetimewidget -> merge into

		plone.formwidget.dateinput

OK - thet - move tests to plone.app.testing

OK - remove all vcal references in favor or ical

		OK - thet - here are git:// and git@ checkouts for ppl without/with rw permissions.

		maybe https handles both?

		OK - ATEvent

		[X] recurrence field goes after end date.
[] hide text area with css display:none
[X] remove schemata recurrence
[] provide checkbox “this date recurrs ...” and toggle textarea then

OK - DX Events: Provide it. providing behaviors, based on plone.app.page

		OK * dependency on plone.folder as well as plone.app.collection are only for

		registering ical adapters and might make backporting harder than neccassary.
optional via zcml:condition

OK * p.a.event tests: ATEvent cannot be created - the factory method is not created... investigate.

OK - datetimewidget calendar images missing...
OK - new TZ field on ATEvent. store all dates in UTC timezone. store TZ extra.

display dates in user’s timezone (via TZ fetcher utility). use getter and
setter to calculate timezones (get: UTC-userTZ set: userTZ->UTC).

		OK - provide configlet to configure portal’s TZ. use dropdown for

		default_timezone and in-out-widget for allowed_timezones (which then are
used to filter tz’s with elephantvocabulary)

OK - plone.event -> TZ vocabulary
OK - plone.app.event -> TZ vocabulary based on elephantvocabulary filter

get filtered items or display items from plone.registry

		OK - TZ fetcher utility

		OK - plone.event: OS TZ
OK - plone.app.event portal TZ
- context, user, portal TZ

		OK - move buildout configs out of coredev/plip into p.a.event to be used

		independently

OK - merge branches with trunk

		OK - buildout: there is a git checkout which isn’t handled by mr.developer because it’s no

		python package and thus could break. mr.developer supports co option
egg=false ... use that.

OK - index: complete the benchmark products.daterecurringindex

OK - index: sync with hanno’s changes to dateindex

OK - TZ: provide widget for TZ field described above

		OK - jure - ATEvent: error when submitting random data to recurrence field. catch

		dateutil’s error and raise validation error. display error as error message.

OK - in plone.event.utils now - isSameDay, isSameTime -... taking event as parameter. change to date1, date2

OK - toDisplay, doing nearly the same as function below. factor out a to_display
function which can used in both

		OK - fix portal_calendar or filtered occurences. calendar portlet is showing event

		from previous month every day.

OK - avoid dependency on portal_calendar or bring that tool in here.

 © Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

archive/_archive-TODO-previous.html

 Navigation

 		
 index

 		
 modules |

 		plone.app.event 1.1 documentation »

TODO

		There seems to be a problem with exclusion rulesets and timezones. There is

a possibility that different results for start and end dates are produced. This has
to be fixed (documented above in howto).

		Andreas Jung reported a problem where the enddate is incorrectly validated. This

has to be fixed.

		Check all packages for correct Licenses

		Add tests to ensure, DateRecurringIndex is actually installed.

		Make event.recurrence not an ATFieldProperty, since that is deprecated

		For recurring events, which have occurrences in the future, show future

occurrences first and hide past occurrences with javascript or so. Needs new
methods (next_occurrences, past_occurrences, next_occurence, previous_occurence)
in RecurrenceSupport event adapter.
- upgrade step for portlets move into plone.app.event. see traceback http://pastebin.com/YFyCytXg
- add <property name=”index_naive_time_as_local”>True</property> property for

start and end indexes in catalog.xml as soon as P.DRI has that extra property

		write tests to check if events and calendar portlets work with recurrence. manual test was ok.

		add deprecation warnings for imports from ATContentTypes

		make BBB back-imports of CT, utilities, interfaces, etc in ATContentTypes and deprecate them

		leave utils.txt with it’s date conversion functions and test_bugs.py back in
P.ATCT, but deprecate them.

		upgrade step to recatalog the start and end indexes

		make calendar widget display (hidden) the timezone

		add a hook to getICal(), getVCal() for retrieving additional data
from derived event types

		check how much sense start&end metadata columns in catalog.xml make sense.
they return start&end of first occurence but nothing else.
–> guess its used by folder_listing displaying start and end time from brain info.

		think about storing all dates in utc and converting them on display to
localized time.
usecase where this won’t work: dates going over DST borders. like meeting from
oktober-november shouldn’t change the relative time

OUT OF SCOPE FOR NOW - let P.Archetypes set the timezone regarding the timezone
set in the request/user’s browser.

OK - Make event.whole_day not an ATFieldProperty, since that is deprecated
OK - Check dependencies in setup.py for every package
OK - set start and end for wholedayevents to 0:00, resp, 23:59:59

		test whole day event handler

		OK - check display of recurring events

		OK - start date included twice
OK - line breaks btw dates
OK - recurrence dates wrongly displayed

		OK - use plone.event.utils.pydt instead of DT2dt - it uses real timezones and

		converts the date to UTC if the timezone cant be retrieved (like: GMT+1
is a GMT/UTC offset, but not a “real” timezone where daylight saving
changes can be derived).

OK - update calendar-portlet and move it into plone.app.event
OK - update events-portlet and move it into plone.app.event
OK - actually test, if calendar and events portlets work with recurrence
OK - check use of MessageFactory. should message factory be in plone namespace?

yes

OK - synchronize package with newest ATContentTypes (diff modified with trunk)
OK - clean up recurrence code and only use new rrulestring implementation
OBSOLETE - rename package to plone.app.calendar and create one for

plone.calendar (e.g. for RFC2445 definitions)

		OK - test for disabled recurrence and None values to store in recurrence field.

		see how index is behaving

Future

		integrate hcal microformat

		use plone.testing and plone.app.testing

TODO for Plone

OK - depend on plone.app.event
Ok - include plone.app.event package in configure.zcml
OK - include plone.app.event in metadata.xml GS profile
OK - remove catalog index and metadata column and use those in plone.app.event

 © Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

search.html

 Navigation

 		
 index

 		
 modules |

 		plone.app.event 1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Plone Foundation.
 Created using Sphinx 1.2.

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/file.png

_static/up-pressed.png

_static/comment.png

_static/down.png

_static/down-pressed.png

